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Lab Exercise 4 

Naïve Bayes classifier with WEKA 

Naïve Bayes classifier is a statistical classifier. It assumes that the values of attributes in the classes 
are independent. This assumption is called class conditional independence. Naïve Bayes classifier is 
based on Bayes' theorem, which reads as follows:  

P(C|X) = (P(X|C) * P(C))/P(X) 

where: 

• P(C) is the a priori probability of a class C occurrence (i.e. the probability that any sample 
belongs to class C),  

• P(X|C) indicates the posteriori probability that X belongs to class C,  

• P(X) is the a priori probability of a sample X occurrence  

According to the Bayes’ rule, sample X is classified as coming from the class Ci for which the value of 
P(Ci|X), i = 1, 2, ...., m, is the highest. 

Because the P(X) probability is constant for all classes, therefore the Ci  class, for which the value of 
P(Ci |X) is the highest, is the Ci class, for which the value of P(X| Ci ) * P(Ci ) is the highest. 

max[P(X| Ci ) * P(Ci )] 

 

How to estimate the a priori probability P(Ci)? 

• The values of P(Ci ) are replaced by the relative frequency of Ci class in the training set: 
 

P(Ci ) = si/n 
 
where: 

• si denotes the number of Ci class samples in the training set  

• n is the number of samples in the training set 

OR 

• Assume that all classes have the same probability: 

P(C1 ) = P(C2 ) = ... = P(Cm) 

 

How to calculate P(X|Ci)? 

Probabilities of P(X1|Ci), P(X2|Ci), ..., P(Xn|Ci) can be estimated based on the training set as follows: 

• if the j-th attribute is a categorical attribute, then P(Xj|Ci) estimate the relative frequency of 
occurrence of examples from class Ci with the value xj for the j-th attribute: 

P(Xj|Ci) = sij/si. 

• if the j-th attribute is a continuous attribute, then P(xj|Ci) is estimated using  the density 
function of Gauss (assuming a normal distribution of the values of the attribute): 
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Exercise 1: Basic manual classification using Naïve Bayes  

Using Naïve Bayes classifier make a prediction of the class to which the below cases belongs to:  

ID Age Income Student Status Buy_computer 

1 <=30 high no single no 

2 <=30 high no married no 

3 31..40 high no single yes 

4 >40 medium no single yes 

5 >40 low yes single yes 

6 >40 low yes married no 

7 31..40 low yes married yes 

8 <=30 medium no single no 

9 <=30 low yes single yes 

10 >40 medium yes single yes 

11 <=30 medium yes married yes 

12 31..40 medium no married yes 

13 31..40 high yes single yes 

a) X1 = (age=‘31..40’, income=‘high’, student = ‘yes’, status=‘single’)  
b) X2 = (age=‘<=30’, income=‘high’, student = ‘yes’, status=‘married’)  
c) X3 = (age=‘>40, income=‘medium’, student = ‘no’, status=‘married’)  

WEKA tip -  Docs 

In the last tutorial you have used J48 algorithm to implement a decision tree model following the C4.5 
algorithm. C4.5 is an algorithm used to generate a decision tree, which was developed by Ross 
Quinlan. C4.5 is an extension of Quinlan's earlier ID3 algorithm. The ID3 algorithm uses "Information 
Gain" measure. The C4.5 uses "Gain Ratio" measure. If you look at the picture below, you can see 
that Weka cites the reference of the implemented classifier. 

 

J48 can deal with both nominal and numeric  attributes. However, please remember that this is not 
always the case, since some classifiers do not have this flexibility, for example linear classifiers. In the 
following exercise you will explore the behavior of Weka's Naïve Bayes implementations. NB is neither 
a linear classifier, nor a “divide and conquer” classifier, is a probabilistic classifier. How does NB 
behave with linguistic datasets? Let's carry out this exploration today... 

Exercise 2: Spam filtering with WEKA and Naïve Bayes classifier 

We will use Weka to train a Naïve Bayes classifier for the purposes of spam detection. 

The data set we will consider is the Spambase set, consisting of tagged emails from a single email 
account. You can download this from the website.  

Read through the description available for this data to get a feel for what you're dealing with. The 
data has been converted to ARFF format for you: 
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Preprocessing 

Some simple preprocessing of the data will be required before it is ready for use. We can do this in 
Weka: 

1. Familiarize yourself with the ARFF format 

2. From the Preprocess (default) tab in Weka, hit Open file... and select the spambase.arff file 
that you downloaded above. 

3. A full list of the attributes in this data set will appear in the "Attributes" frame. 

4. Delete the capital_run_length_average, capital_run_length_longest and 
capital_run_length_total attributes by checking the box to their left and hitting the Remove 
button. 

5. The remaining attributes represent relative frequencies of various important words and 
characters in emails. We wish to convert these to Boolean values instead: 1 if the word or 
character is present in the email, 0 if not. To do this, select the Choose button in the Filter 
frame at the top of the window, and pick filters > unsupervised > attribute > 
NumericToBinary. Now hit the Apply button. All the numeric frequency attributes are now 
converted to Booleans. Each e-mail is now represented by a 55 dimensional vector 
representing whether or not a particular word exists in an e-mail. This is the so called “bag of 
words’ representation (this is clearly a very crude assumption since it does not take into 
account the order of the words). For more details on “bag of words” see 
(https://en.wikipedia.org/wiki/Bag-of-words_model) 

6. Save this preprocessed data set for future use using the Save... button. You will need this for 
lab 2. 

 

Classification 

Given the data set we've just loaded, we wish to train a Naïve Bayes classifier to distinguish spam 
from regular email by fitting a distribution of the number of occurrences of each word for all the spam 
and non-spam e-mails. Under the Classify tab: 

1. Select Choose in the Classifier frame at the top and select classifiers > bayes > 
NaiveBayes. 

2. Leave the default settings and hit Start to build the classifier. Study the output produced, most 
importantly the percentages of correctly and incorrectly classified instances. You probably will 
notice that your classifier does rather well despite making a very strong assumption on the 
form of the data. 

• Can you come up with a reason for the good performance? What would be the main 
practical problems we would face if we were not to make this assumption for this particular 
dataset? 

• How long did your classifier take to train and classify? Given this, how scalable do you 
think the Naïve Bayes classifier is to large datasets? Can you come up with a good reason 
for this? 

3. Examine the classifier models produced by Weka (printed above the performance summary). 
Find the prior probabilities for each class. 

• How does Naïve Bayes compute the probability of an e-mail belonging to a class 
(spam/not spam)? 

• Compute the conditional probability of observing the word "3d" given that an e-mail is 
spam P(3d|spam) and that it is non-spam P(3d|non-spam). To do this, we need to use the 
counts of the built model that are produced within the Classifier output screen under the 
Classify tab. The general format of the Weka count output is (Note: this is a toy example. 

https://en.wikipedia.org/wiki/Bag-of-words_model
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You will need to examine your Weka output to find the true counts for the word "3d".):

 

This means that 4 instances (e.g. e-mails) contain that particular attribute value (e.g. the 
word "3d") in Class 1 (e.g. Is Spam). 2 instances didn't contain that value of the attribute in 
Class 1. 3 instances of Class 0 contained that attribute value, whilst 1 instance of Class 0 
(e.g. Not Spam) didn't contain that attribute value. The totals reflect the number of 
instances belonging to both classes e.g. the number of e-mails that are Spam and not 
Spam. 

4. For the final part of this section we will now pretend we are spammers wishing to fool a spam 
checking system based on Naïve Bayes into classifying a spam e-mail as ham (i.e. a valid e-
mail – see: https://blog.barracuda.com/2013/10/03/ham-v-spam-whats-the-difference/ ). We 
will now use all of the training data to train our classifier and apply the learnt classifier to a 
dedicated test set.  

a. Load the test set in Weka.  

b. Under the Classify tab, select supplied test set > set > open file and set the test file 
to the supplied spambase_test.arff. This ARFF file contains the binary vector 
representing one spam e-mail.  

c. Run the Naïve Bayes classifier on this test set. Does the classifier classify the spam 
e-mail correctly? 

5. Open the test file spambase_test.arff in text editor. Identify good non-spam words and add 
these to the e-mail. Important: Leave the class label (last attribute value) in the test data file 
untouched. During testing, Weka will ignore this attribute and will instead use our previously 
trained classifier to predict the class label of this e-mail. Re-run the classifier on the modified 
test set. Has the class label (spam/non-spam) for this e-mail changed? 

 
You've now managed to switch the predicted class label for that e-mail. Adding more “hammy” 
words to this e-mail has sufficiently increased the probability that this e-mail is ham so the 
classifier now outputs "ham" as the e-mail's class label (by changing the word content of the e-
mail you have added extra evidence or "votes" towards this e-mail being classified as ham). 
This is the "stuffing" example given in the lectures and is directly caused by the independence 
assumption that is made by Naive Bayes. Each word contributes independently of each other 
to the final score. This is a reason that a lot of spam e-mails include random excerpts from the 
passages of books so as to effectively add “ hammy” words in the hope that the spam e-mail 
will bypass the spam filters. For this reason, in practice, many commercial e-mail systems 
(consider Gmail) likely use a lot more sophisticated spam detection models. 

https://blog.barracuda.com/2013/10/03/ham-v-spam-whats-the-difference/

